Trends-US

Impacts of an industrial deep-sea mining trial on macrofaunal biodiversity

  • Mero, J. L. in The Mineral Resources of the Sea Vol. 1 (ed Mero, J. L.) 103–241 (Elsevier, 1965).

  • Boschen, R. E., Rowden, A. A., Clark, M. R. & Gardner, J. P. A. Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast. Manag. 84, 54–67 (2013).

    Article 

    Google Scholar 

  • Hein, Conrad, J. R., Tracey, A. & & Dunham, R. E. Seamount characteristics and mine-site model applied to exploration- and mining-lease-block selection for cobalt-rich ferromanganese crusts. Mar. Georesour. Geotechnol. 27, 160–176 (2009).

    Article 
    CAS 

    Google Scholar 

  • Hein, J. R., Koschinsky, A. & Kuhn, T. Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ. 1, 158–169 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hecker, B. & Paul, A. Z. Benthic Baseline Survey of the DOMES Area (NOAA, 1977).

  • Wilson, G. D. F. Macrofauna abundance, species diversity and turnover at three sites in the Clipperton–Clarion fracture zone. Mar. Biodivers. 47, 323–347 (2017).

    Article 

    Google Scholar 

  • Washburn, T. W. et al. Patterns of macrofaunal biodiversity across the Clarion-Clipperton zone: an area targeted for seabed mining. Front. Mar. Sci. 8, 626571 (2021).

  • Chuar, C. H., Tong, S. J. W., Chim, C. K., Wong, H. P. S. & Tan, K. S. Abyssal macrofaunal community structure in the polymetallic nodule exploration area at the easternmost region of the Clarion-Clipperton fracture zone, Pacific Ocean. Deep Sea Res. I 161, 103284 (2020).

    Article 

    Google Scholar 

  • Yu, O. H. et al. Characterization of deep-sea macrofauna in the Korean exploration claim area in the Clarion-Clipperton fracture zone, Northeastern Pacific Ocean. Ocean Sci. J. 53, 301–314 (2018).

    Article 

    Google Scholar 

  • Stewart, E. C. D. et al. Biodiversity, biogeography, and connectivity of polychaetes in the world’s largest marine minerals exploration frontier. Divers. Distrib. 29, 727–747 (2023).

    Article 

    Google Scholar 

  • Rabone, M. et al. How many metazoan species live in the world’s largest mineral exploration region?. Curr. Biol. 33, 2383–2396 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rex, M. A. & Etter, R. J. Deep-Sea Biodiversity: Pattern and Scale (Harvard Univ. Press, 2010).

  • Glover, A. G. et al. Polychaete species diversity in the central Pacific abyss: local and regional patterns, and relationships with productivity. Mar. Ecol. Prog. Ser. 240, 157–170 (2002).

    Article 

    Google Scholar 

  • McClain, C. R., Nekola, J. C., Kuhnz, L. & Barry, J. P. Local-scale faunal turnover on the deep Pacific seafloor. Mar. Ecol. Prog. Ser. 422, 193–200 (2011).

    Article 

    Google Scholar 

  • Ingels, J. & Vanreusel, A. The importance of different spatial scales in determining structural and functional characteristics of deep-sea infauna communities. Biogeosciences 10, 4547–4563 (2013).

    Article 

    Google Scholar 

  • Kaiser, S. et al. Effects of environmental and climatic drivers on abyssal macrobenthic infaunal communities from the NE Pacific nodule province. Mar. Biodivers. 54, 35 (2024).

    Article 

    Google Scholar 

  • Hartman, S. E. et al. Enduring science: three decades of observing the Northeast Atlantic from the Porcupine Abyssal Plain Sustained Observatory (PAP-SO). Prog. Oceanogr. 191, 102508 (2021).

    Article 

    Google Scholar 

  • Horton, T. et al. Are abyssal scavenging amphipod assemblages linked to climate cycles?. Prog. Oceanogr. 184, 102318 (2020).

    Article 

    Google Scholar 

  • Glover, A. G. et al. The environmental impacts of deep-sea mining. Curr. Biol. (in the press).

  • Thiel, H. et al. The large-scale environmental impact experiment DISCOL—reflection and foresight. Deep Sea Res. II 48, 3869–3882 (2001).

    Article 

    Google Scholar 

  • Jones, D. O. B. et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 12, e0171750 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, D. O. B. et al. Long-term impact and biological recovery in a deep-sea mining track. Nature 642, 112–118 (2025).

  • Lefaible, N. et al. Industrial mining trial for polymetallic nodules in the Clarion–Clipperton zone indicates complex and variable disturbances of meiofaunal communities. Front. Mar. Sci. 11, 1380530 (2024).

  • Fukushima, T. & Imajima, M. A study of a macrobenthos community in a deep sea resedimentation area. In Proc. International Symposium on Environmental Studies for Deep-Sea Mining 331–335 (MMAJ, 1997).

  • Trueblood, D. D., Ozturgut, E., Pilipchuk, M. & Gloumov, I. F. The ecological impacts of the Joint U.S.–Russian benthic impact experiment. In Proc. Second Ocean Mining Symposium 139–145 (ISOPE, 1997).

  • Ingole, B. S., Ansari, Z. A., Rathod, V. & Rodrigues, N. Response of deep-sea macrobenthos to a small-scale environmental disturbance. Deep Sea Res. II 48, 3401–3410 (2001).

    Article 

    Google Scholar 

  • Borowski, C. Physically disturbed deep-sea macrofauna in the Peru Basin, southeast Pacific, revisited 7 years after the experimental impact. Deep Sea Res. II 48, 3809–3839 (2001).

    Article 

    Google Scholar 

  • Underwood, A. J. The mechanics of spatially replicated sampling programmes to detect environmental impacts in a variable world. Aust. J. Ecol. 18, 99–116 (1993).

    Article 

    Google Scholar 

  • Underwood, A. J. On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecol. Appl. 4, 3–15 (1994).

    Article 

    Google Scholar 

  • Warwick, R. M. & Clarke, K. R. Increased variability as a symptom of stress in marine communities. J. Exp. Mar. Biol. Ecol. 172, 215–226 (1993).

    Article 

    Google Scholar 

  • McVeigh, K. Canadian company in negotiations with Trump to mine seabed. The Guardian (28 March 2025).

  • Borowski, C. & Thiel, H. Deep-sea macrofaunal impacts of a large-scale physical disturbance experiment in the Southeast Pacific. Deep Sea Res. II 45, 55–81 (1998).

    Article 

    Google Scholar 

  • Murray, C. et al. Effects of experimental in situ seabed disturbance on deep-sea macrofaunal communities of Chatham Rise, Southwest Pacific. NZ J. Mar. Freshw. Res. 59, 1496–1529 (2025).

  • van der Grient, J. M. A. & Drazen, J. C. Evaluating deep-sea communities’ susceptibility to mining plumes using shallow-water data. Sci. Total Environ. 852, 158162 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Simon-Lledó, E. et al. Biological effects 26 years after simulated deep-sea mining. Sci. Rep. 9, 8040 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bigham, K. T., Rowden, A. A., Leduc, D. & Bowden, D. A. Review and syntheses: impacts of turbidity flows on deep-sea benthic communities. Biogeosciences 18, 1893–1908 (2021).

    Article 

    Google Scholar 

  • Bigot, L. et al. Assessment of the ecological quality status of soft-bottoms in Reunion Island (tropical Southwest Indian Ocean) using AZTI marine biotic indices. Mar. Pollut. Bull. 56, 704–722 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stark, J. S., Kim, S. L. & Oliver, J. S. Anthropogenic disturbance and biodiversity of marine benthic communities in Antarctica: a regional comparison. PLoS ONE 9, e98802 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruhl, H. A. & Smith, K. L. Shifts in deep-sea community structure linked to climate and food supply. Science 305, 513–515 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Drazen, J. C., Baldwin, R. J. & Smith, K. L. Sediment community response to a temporally varying food supply at an abyssal station in the NE Pacific. Deep Sea Res. II 45, 893–913 (1998).

    Article 
    CAS 

    Google Scholar 

  • Ruhl, H. A., Ellena, J. A. & Smith, K. L. Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proc. Natl Acad. Sci. USA 105, 17006–17011 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glover, A. G. et al. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. Adv. Mar. Biol. 58, 1–95 (2010).

  • Levin, L. A. et al. Defining “serious harm” to the marine environment in the context of deep-seabed mining. Mar. Policy 74, 245–259 (2016).

    Article 

    Google Scholar 

  • Magurran, A. E. Measuring Biological Diversity (Wiley-Blackwell, 2004).

  • McClain, C. R. & Schlacher, T. A. On some hypotheses of diversity of animal life at great depths on the sea floor. Mar. Ecol. 36, 849–872 (2015).

    Article 

    Google Scholar 

  • Thrush, S. F. & Dayton, P. K. Disturbance to marine benthic habitats by trawling and dredging: implications for marine biodiversity. Annu. Rev. Ecol. Evol. Syst. 33, 449–473 (2002).

    Article 

    Google Scholar 

  • Simon-Lledó, E. et al. Megafaunal variation in the abyssal landscape of the Clarion Clipperton zone. Prog. Oceanogr. 170, 119–133 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dumbrell, A. J. et al. Changes in species diversity following habitat disturbance are dependent on spatial scale: theoretical and empirical evidence. J. Appl. Ecol. 45, 1531–1539 (2008).

    Article 

    Google Scholar 

  • Fleming, B. F. M., Simon-Lledó, E., Benoist, N., O’Malley, B. & Jones, D. O. B. Influence of seabed heterogeneity on benthic megafaunal community patterns in abyssal nodule fields. Elementa 13, 00049 (2025).

    Google Scholar 

  • Clark, M. R., Durden, J. M. & Christiansen, S. Environmental impact assessments for deep-sea mining: can we improve their future effectiveness? Mar. Policy https://doi.org/10.1016/j.marpol.2018.11.026 (2020).

  • Etter, R. J. General sampling design for baseline studies. in Standardization of Environmental data and information—Development Guidelines 427–447 (International Seabed Authority, 2002).

  • Fraterrigo, J. M. & Rusak, J. A. Disturbance-driven changes in the variability of ecological patterns and processes. Ecol. Lett. 11, 756–770 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Amon, D. J. et al. Assessment of scientific gaps related to the effective environmental management of deep-seabed mining. Mar. Policy 138, 105006 (2022).

    Article 

    Google Scholar 

  • Madureira, P., Brekke, H., Cherkashov, G. & Rovere, M. Exploration of polymetallic nodules in the area: reporting practices, data management and transparency. Mar. Policy 70, 101–107 (2016).

    Article 

    Google Scholar 

  • Gallucci, F., Moens, T., Vanreusel, A. & Fonseca, G. Active colonisation of disturbed sediments by deep-sea nematodes: evidence for the patch mosaic model. Mar. Ecol. Prog. Ser. 367, 173–183 (2008).

    Article 

    Google Scholar 

  • Glover, A. G., Wiklund, H., Chen, C. & Dahlgren, T. G. Managing a sustainable deep-sea ‘blue economy’ requires knowledge of what actually lives there. Elife 7, e41319 (2018).

  • Standardization of Environmental Data and Information—Development of Guidelines (International Seabed Authority, 2002).

  • TMC Subsidiary NORI shares preliminary findings on environmental impacts of pilot nodule collection system test. TMC https://investors.metals.co/news-releases/news-release-details/tmc-subsidiary-nori-shares-preliminary-findings-environmental/ (14 December 2023).

  • Glover, A. G., Dahlgren, T. G., Wiklund, H., Mohrbeck, I. & Smith, C. R. An end-to-end DNA taxonomy methodology for benthic biodiversity survey in the Clarion–Clipperton zone, Central Pacific Abyss. J. Mar. Sci. Eng. 4, 2 (2016).

    Article 

    Google Scholar 

  • Horton, T. et al. Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications. Front. Mar. Sci. 8, 620702 (2021).

  • World Register of Marine Species (WoRMS, 2025).

  • Wiklund, H. et al. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion–Clipperton zone, central Pacific Ocean: Mollusca. ZooKeys https://doi.org/10.3897/zookeys.707.13042 (2017).

  • Wiklund, H. et al. Checklist of newly-vouchered annelid taxa from the Clarion–Clipperton zone, central Pacific Ocean, based on morphology and genetic delimitation. Biodivers. Data J. 11, e86921 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stewart, E. C. D., Bribiesca-Contreras, G., Weston, J. N. J., Glover, A. G. & Horton, T. Biogeography and phylogeny of the scavenging amphipod genus Valettietta (Amphipoda: Alicelloidea), with descriptions of two new species from the abyssal Pacific Ocean. Zool. J. Linn. Soc. 201, zlae102 (2024).

    Article 

    Google Scholar 

  • Dahlgren, T. G. et al. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion–Clipperton zone, central Pacific Ocean: Cnidaria. Biodivers. Data J. 4, e9277 (2016).

  • Bribiesca-Contreras, G. et al. Benthic megafauna of the western Clarion–Clipperton zone, Pacific Ocean. ZooKeys 1113, 1–110 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neal, L. et al. Taxonomy, phylogeny, and biodiversity of Lumbrineridae (Annelida, Polychaeta) from the Central Pacific Clarion–Clipperton zone. ZooKeys 1172, 61–100 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drennan, R. et al. On Anguillosyllis cf. hessleri Maciolek, 2020—a species complex from the Clarion–Clipperton zone, abyssal central Pacific. Deep Sea Res. I 220, 104453 (2025).

    Article 

    Google Scholar 

  • Bonifácio, P., Martínez Arbizu, P. & Menot, L. Alpha and beta diversity patterns of polychaete assemblages across the nodule province of the eastern Clarion–Clipperton fracture zone (equatorial Pacific). Biogeosciences 17, 865–886 (2020).

    Article 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community ecology package. R version 2.6-10 (2025).

  • Chao, A., Ma, K. H., Hseih, T. C. & Chiu, C. H. SpadeR: psecies-richness prediction and diversity estimation in R. R version 0.1.1 (2015).

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar 

  • Kindt, R. BiodiversityR: package for community ecology and suitability analysis. R version 2.17–1.1 (2025).

  • De Cáceres, M., Jansen, F., Endicott, S. & Dell, N. Package ‘indicspecies’: Relationship between species and groups of sites. R version 1.8.0 (2025).

  • Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R version 0.7.2 (2023).

  • Rothman, K. J. No adjustments are needed for multiple comparisons. Epidemiology 1, 43 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beninger, P. G., Boldina, I. & Katsanevakis, S. Strengthening statistical usage in marine ecology. J. Exp. Mar. Biol. Ecol. 426–427, 97–108 (2012).

    Article 

    Google Scholar 

  • Underwood, A. J. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance (Cambridge Univ. Press, 1997).

  • McClain, C. R. The commonness of rarity in a deep-sea taxon. Oikos 130, 863–878 (2021).

    Article 

    Google Scholar 

  • Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).

    Google Scholar 

  • Chiu, C.-H., Wang, Y.-T., Walther, B. A. & Chao, A. An improved nonparametric lower bound of species richness via a modified Good–Turing frequency formula. Biometrics 70, 671–682 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Burnham, K. P. & Overton, W. S. Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927–936 (1979).

    Article 

    Google Scholar 

  • Clarke, K. R. Comparisons of dominance curves. J. Exp. Mar. Biol. Ecol. 138, 143–157 (1990).

    Article 

    Google Scholar 

  • Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online https://doi.org/10.1002/9781118445112.stat07841 (2017).

  • Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R version 0.4 (2020).

  • Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Dufrêne, M. & Legendre, P. Species assemblages and indicator species:the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).

    Google Scholar 

  • De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).

    Article 

    Google Scholar 

  • Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button