Impacts of an industrial deep-sea mining trial on macrofaunal biodiversity

Mero, J. L. in The Mineral Resources of the Sea Vol. 1 (ed Mero, J. L.) 103–241 (Elsevier, 1965).
Boschen, R. E., Rowden, A. A., Clark, M. R. & Gardner, J. P. A. Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast. Manag. 84, 54–67 (2013).
Google Scholar
Hein, Conrad, J. R., Tracey, A. & & Dunham, R. E. Seamount characteristics and mine-site model applied to exploration- and mining-lease-block selection for cobalt-rich ferromanganese crusts. Mar. Georesour. Geotechnol. 27, 160–176 (2009).
Google Scholar
Hein, J. R., Koschinsky, A. & Kuhn, T. Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ. 1, 158–169 (2020).
Google Scholar
Hecker, B. & Paul, A. Z. Benthic Baseline Survey of the DOMES Area (NOAA, 1977).
Wilson, G. D. F. Macrofauna abundance, species diversity and turnover at three sites in the Clipperton–Clarion fracture zone. Mar. Biodivers. 47, 323–347 (2017).
Google Scholar
Washburn, T. W. et al. Patterns of macrofaunal biodiversity across the Clarion-Clipperton zone: an area targeted for seabed mining. Front. Mar. Sci. 8, 626571 (2021).
Chuar, C. H., Tong, S. J. W., Chim, C. K., Wong, H. P. S. & Tan, K. S. Abyssal macrofaunal community structure in the polymetallic nodule exploration area at the easternmost region of the Clarion-Clipperton fracture zone, Pacific Ocean. Deep Sea Res. I 161, 103284 (2020).
Google Scholar
Yu, O. H. et al. Characterization of deep-sea macrofauna in the Korean exploration claim area in the Clarion-Clipperton fracture zone, Northeastern Pacific Ocean. Ocean Sci. J. 53, 301–314 (2018).
Google Scholar
Stewart, E. C. D. et al. Biodiversity, biogeography, and connectivity of polychaetes in the world’s largest marine minerals exploration frontier. Divers. Distrib. 29, 727–747 (2023).
Google Scholar
Rabone, M. et al. How many metazoan species live in the world’s largest mineral exploration region?. Curr. Biol. 33, 2383–2396 (2023).
Google Scholar
Rex, M. A. & Etter, R. J. Deep-Sea Biodiversity: Pattern and Scale (Harvard Univ. Press, 2010).
Glover, A. G. et al. Polychaete species diversity in the central Pacific abyss: local and regional patterns, and relationships with productivity. Mar. Ecol. Prog. Ser. 240, 157–170 (2002).
Google Scholar
McClain, C. R., Nekola, J. C., Kuhnz, L. & Barry, J. P. Local-scale faunal turnover on the deep Pacific seafloor. Mar. Ecol. Prog. Ser. 422, 193–200 (2011).
Google Scholar
Ingels, J. & Vanreusel, A. The importance of different spatial scales in determining structural and functional characteristics of deep-sea infauna communities. Biogeosciences 10, 4547–4563 (2013).
Google Scholar
Kaiser, S. et al. Effects of environmental and climatic drivers on abyssal macrobenthic infaunal communities from the NE Pacific nodule province. Mar. Biodivers. 54, 35 (2024).
Google Scholar
Hartman, S. E. et al. Enduring science: three decades of observing the Northeast Atlantic from the Porcupine Abyssal Plain Sustained Observatory (PAP-SO). Prog. Oceanogr. 191, 102508 (2021).
Google Scholar
Horton, T. et al. Are abyssal scavenging amphipod assemblages linked to climate cycles?. Prog. Oceanogr. 184, 102318 (2020).
Google Scholar
Glover, A. G. et al. The environmental impacts of deep-sea mining. Curr. Biol. (in the press).
Thiel, H. et al. The large-scale environmental impact experiment DISCOL—reflection and foresight. Deep Sea Res. II 48, 3869–3882 (2001).
Google Scholar
Jones, D. O. B. et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 12, e0171750 (2017).
Google Scholar
Jones, D. O. B. et al. Long-term impact and biological recovery in a deep-sea mining track. Nature 642, 112–118 (2025).
Lefaible, N. et al. Industrial mining trial for polymetallic nodules in the Clarion–Clipperton zone indicates complex and variable disturbances of meiofaunal communities. Front. Mar. Sci. 11, 1380530 (2024).
Fukushima, T. & Imajima, M. A study of a macrobenthos community in a deep sea resedimentation area. In Proc. International Symposium on Environmental Studies for Deep-Sea Mining 331–335 (MMAJ, 1997).
Trueblood, D. D., Ozturgut, E., Pilipchuk, M. & Gloumov, I. F. The ecological impacts of the Joint U.S.–Russian benthic impact experiment. In Proc. Second Ocean Mining Symposium 139–145 (ISOPE, 1997).
Ingole, B. S., Ansari, Z. A., Rathod, V. & Rodrigues, N. Response of deep-sea macrobenthos to a small-scale environmental disturbance. Deep Sea Res. II 48, 3401–3410 (2001).
Google Scholar
Borowski, C. Physically disturbed deep-sea macrofauna in the Peru Basin, southeast Pacific, revisited 7 years after the experimental impact. Deep Sea Res. II 48, 3809–3839 (2001).
Google Scholar
Underwood, A. J. The mechanics of spatially replicated sampling programmes to detect environmental impacts in a variable world. Aust. J. Ecol. 18, 99–116 (1993).
Google Scholar
Underwood, A. J. On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecol. Appl. 4, 3–15 (1994).
Google Scholar
Warwick, R. M. & Clarke, K. R. Increased variability as a symptom of stress in marine communities. J. Exp. Mar. Biol. Ecol. 172, 215–226 (1993).
Google Scholar
McVeigh, K. Canadian company in negotiations with Trump to mine seabed. The Guardian (28 March 2025).
Borowski, C. & Thiel, H. Deep-sea macrofaunal impacts of a large-scale physical disturbance experiment in the Southeast Pacific. Deep Sea Res. II 45, 55–81 (1998).
Google Scholar
Murray, C. et al. Effects of experimental in situ seabed disturbance on deep-sea macrofaunal communities of Chatham Rise, Southwest Pacific. NZ J. Mar. Freshw. Res. 59, 1496–1529 (2025).
van der Grient, J. M. A. & Drazen, J. C. Evaluating deep-sea communities’ susceptibility to mining plumes using shallow-water data. Sci. Total Environ. 852, 158162 (2022).
Google Scholar
Simon-Lledó, E. et al. Biological effects 26 years after simulated deep-sea mining. Sci. Rep. 9, 8040 (2019).
Google Scholar
Bigham, K. T., Rowden, A. A., Leduc, D. & Bowden, D. A. Review and syntheses: impacts of turbidity flows on deep-sea benthic communities. Biogeosciences 18, 1893–1908 (2021).
Google Scholar
Bigot, L. et al. Assessment of the ecological quality status of soft-bottoms in Reunion Island (tropical Southwest Indian Ocean) using AZTI marine biotic indices. Mar. Pollut. Bull. 56, 704–722 (2008).
Google Scholar
Stark, J. S., Kim, S. L. & Oliver, J. S. Anthropogenic disturbance and biodiversity of marine benthic communities in Antarctica: a regional comparison. PLoS ONE 9, e98802 (2014).
Google Scholar
Ruhl, H. A. & Smith, K. L. Shifts in deep-sea community structure linked to climate and food supply. Science 305, 513–515 (2004).
Google Scholar
Drazen, J. C., Baldwin, R. J. & Smith, K. L. Sediment community response to a temporally varying food supply at an abyssal station in the NE Pacific. Deep Sea Res. II 45, 893–913 (1998).
Google Scholar
Ruhl, H. A., Ellena, J. A. & Smith, K. L. Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proc. Natl Acad. Sci. USA 105, 17006–17011 (2008).
Google Scholar
Glover, A. G. et al. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. Adv. Mar. Biol. 58, 1–95 (2010).
Levin, L. A. et al. Defining “serious harm” to the marine environment in the context of deep-seabed mining. Mar. Policy 74, 245–259 (2016).
Google Scholar
Magurran, A. E. Measuring Biological Diversity (Wiley-Blackwell, 2004).
McClain, C. R. & Schlacher, T. A. On some hypotheses of diversity of animal life at great depths on the sea floor. Mar. Ecol. 36, 849–872 (2015).
Google Scholar
Thrush, S. F. & Dayton, P. K. Disturbance to marine benthic habitats by trawling and dredging: implications for marine biodiversity. Annu. Rev. Ecol. Evol. Syst. 33, 449–473 (2002).
Google Scholar
Simon-Lledó, E. et al. Megafaunal variation in the abyssal landscape of the Clarion Clipperton zone. Prog. Oceanogr. 170, 119–133 (2019).
Google Scholar
Dumbrell, A. J. et al. Changes in species diversity following habitat disturbance are dependent on spatial scale: theoretical and empirical evidence. J. Appl. Ecol. 45, 1531–1539 (2008).
Google Scholar
Fleming, B. F. M., Simon-Lledó, E., Benoist, N., O’Malley, B. & Jones, D. O. B. Influence of seabed heterogeneity on benthic megafaunal community patterns in abyssal nodule fields. Elementa 13, 00049 (2025).
Clark, M. R., Durden, J. M. & Christiansen, S. Environmental impact assessments for deep-sea mining: can we improve their future effectiveness? Mar. Policy https://doi.org/10.1016/j.marpol.2018.11.026 (2020).
Etter, R. J. General sampling design for baseline studies. in Standardization of Environmental data and information—Development Guidelines 427–447 (International Seabed Authority, 2002).
Fraterrigo, J. M. & Rusak, J. A. Disturbance-driven changes in the variability of ecological patterns and processes. Ecol. Lett. 11, 756–770 (2008).
Google Scholar
Amon, D. J. et al. Assessment of scientific gaps related to the effective environmental management of deep-seabed mining. Mar. Policy 138, 105006 (2022).
Google Scholar
Madureira, P., Brekke, H., Cherkashov, G. & Rovere, M. Exploration of polymetallic nodules in the area: reporting practices, data management and transparency. Mar. Policy 70, 101–107 (2016).
Google Scholar
Gallucci, F., Moens, T., Vanreusel, A. & Fonseca, G. Active colonisation of disturbed sediments by deep-sea nematodes: evidence for the patch mosaic model. Mar. Ecol. Prog. Ser. 367, 173–183 (2008).
Google Scholar
Glover, A. G., Wiklund, H., Chen, C. & Dahlgren, T. G. Managing a sustainable deep-sea ‘blue economy’ requires knowledge of what actually lives there. Elife 7, e41319 (2018).
Standardization of Environmental Data and Information—Development of Guidelines (International Seabed Authority, 2002).
TMC Subsidiary NORI shares preliminary findings on environmental impacts of pilot nodule collection system test. TMC https://investors.metals.co/news-releases/news-release-details/tmc-subsidiary-nori-shares-preliminary-findings-environmental/ (14 December 2023).
Glover, A. G., Dahlgren, T. G., Wiklund, H., Mohrbeck, I. & Smith, C. R. An end-to-end DNA taxonomy methodology for benthic biodiversity survey in the Clarion–Clipperton zone, Central Pacific Abyss. J. Mar. Sci. Eng. 4, 2 (2016).
Google Scholar
Horton, T. et al. Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications. Front. Mar. Sci. 8, 620702 (2021).
World Register of Marine Species (WoRMS, 2025).
Wiklund, H. et al. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion–Clipperton zone, central Pacific Ocean: Mollusca. ZooKeys https://doi.org/10.3897/zookeys.707.13042 (2017).
Wiklund, H. et al. Checklist of newly-vouchered annelid taxa from the Clarion–Clipperton zone, central Pacific Ocean, based on morphology and genetic delimitation. Biodivers. Data J. 11, e86921 (2023).
Google Scholar
Stewart, E. C. D., Bribiesca-Contreras, G., Weston, J. N. J., Glover, A. G. & Horton, T. Biogeography and phylogeny of the scavenging amphipod genus Valettietta (Amphipoda: Alicelloidea), with descriptions of two new species from the abyssal Pacific Ocean. Zool. J. Linn. Soc. 201, zlae102 (2024).
Google Scholar
Dahlgren, T. G. et al. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion–Clipperton zone, central Pacific Ocean: Cnidaria. Biodivers. Data J. 4, e9277 (2016).
Bribiesca-Contreras, G. et al. Benthic megafauna of the western Clarion–Clipperton zone, Pacific Ocean. ZooKeys 1113, 1–110 (2022).
Google Scholar
Neal, L. et al. Taxonomy, phylogeny, and biodiversity of Lumbrineridae (Annelida, Polychaeta) from the Central Pacific Clarion–Clipperton zone. ZooKeys 1172, 61–100 (2023).
Google Scholar
Drennan, R. et al. On Anguillosyllis cf. hessleri Maciolek, 2020—a species complex from the Clarion–Clipperton zone, abyssal central Pacific. Deep Sea Res. I 220, 104453 (2025).
Google Scholar
Bonifácio, P., Martínez Arbizu, P. & Menot, L. Alpha and beta diversity patterns of polychaete assemblages across the nodule province of the eastern Clarion–Clipperton fracture zone (equatorial Pacific). Biogeosciences 17, 865–886 (2020).
Google Scholar
Oksanen, J. et al. vegan: Community ecology package. R version 2.6-10 (2025).
Chao, A., Ma, K. H., Hseih, T. C. & Chiu, C. H. SpadeR: psecies-richness prediction and diversity estimation in R. R version 0.1.1 (2015).
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Google Scholar
Kindt, R. BiodiversityR: package for community ecology and suitability analysis. R version 2.17–1.1 (2025).
De Cáceres, M., Jansen, F., Endicott, S. & Dell, N. Package ‘indicspecies’: Relationship between species and groups of sites. R version 1.8.0 (2025).
Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R version 0.7.2 (2023).
Rothman, K. J. No adjustments are needed for multiple comparisons. Epidemiology 1, 43 (1990).
Google Scholar
Beninger, P. G., Boldina, I. & Katsanevakis, S. Strengthening statistical usage in marine ecology. J. Exp. Mar. Biol. Ecol. 426–427, 97–108 (2012).
Google Scholar
Underwood, A. J. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance (Cambridge Univ. Press, 1997).
McClain, C. R. The commonness of rarity in a deep-sea taxon. Oikos 130, 863–878 (2021).
Google Scholar
Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
Chiu, C.-H., Wang, Y.-T., Walther, B. A. & Chao, A. An improved nonparametric lower bound of species richness via a modified Good–Turing frequency formula. Biometrics 70, 671–682 (2014).
Google Scholar
Burnham, K. P. & Overton, W. S. Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927–936 (1979).
Google Scholar
Clarke, K. R. Comparisons of dominance curves. J. Exp. Mar. Biol. Ecol. 138, 143–157 (1990).
Google Scholar
Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online https://doi.org/10.1002/9781118445112.stat07841 (2017).
Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R version 0.4 (2020).
Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).
Google Scholar
Dufrêne, M. & Legendre, P. Species assemblages and indicator species:the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).
Google Scholar




