Trends-US

Patterned wireless transcranial optogenetics generates artificial perception

  • Lebedev, M. A. & Nicolelis, M. A. L. Brain–machine interfaces: past, present and future. Trends Neurosci. 29, 536–546 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Serino, A. et al. Sense of agency for intracortical brain–machine interfaces. Nat. Hum. Behav. 6, 565–578 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brain–computer interfaces. Nat. Electron 6, 109–118 (2023).

    Article 

    Google Scholar 

  • O’Doherty, J. E. et al. Active tactile exploration using a brain–machine–brain interface. Nature 479, 228–231 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flesher, S. N. et al. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372, 831–836 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rapeaux, A. B. & Constandinou, T. G. Implantable brain machine interfaces: first-in-human studies, technology challenges and trends. Curr. Opin. Biotechnol. 72, 102–111 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shin, G. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509–521 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y. et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 24, 1035–1045 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ausra, J. et al. Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals. Proc. Natl Acad. Sci. USA 118, e2025775118 (2021).

  • Yang, Y. et al. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience. Nat. Protoc. 17, 1073–1096 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y. et al. Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics and photopharmacology. Nat. Commun. 13, 5571 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marshel, J. H. et al. Cortical layer–specific critical dynamics triggering perception. Science 365, eaaw5202 (2019).

  • Robinson, N. T. M. et al. Targeted activation of hippocampal place cells drives memory-guided spatial behavior. Cell 183, 1586–1599 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gill, J. V. et al. Precise holographic manipulation of olfactory circuits reveals coding features determining perceptual detection. Neuron 108, 382–393 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carrillo-Reid, L., Han, S., Yang, W., Akrouh, A. & Yuste, R. Controlling visually guided behavior by holographic recalling of cortical ensembles. Cell 178, 447–457 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oldenburg, I. A. et al. The logic of recurrent circuits in the primary visual cortex. Nat. Neurosci. 27, 137–147 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adesnik, H. & Abdeladim, L. Probing neural codes with two-photon holographic optogenetics. Nat. Neurosci. 24, 1356–1366 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bollmann, Y. et al. Prominent in vivo influence of single interneurons in the developing barrel cortex. Nat. Neurosci. 26, 1555–1565 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chong, E. et al. Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception. Science 368, eaba2357 (2020).

  • Pinto, L. & Dan, Y. Cell-type-specific activity in prefrontal cortex during goal-directed behavior. Neuron 87, 437–450 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinto, L. et al. Task-dependent changes in the large-scale dynamics and necessity of cortical regions. Neuron 104, 810–824 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinto, L., Tank, D. W. & Brody, C. D. Multiple timescales of sensory-evidence accumulation across the dorsal cortex. eLife 11, e70263 (2022).

  • Cox, J. & Witten, I. B. Striatal circuits for reward learning and decision-making. Nat. Rev. Neurosci. 20, 482–494 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ouyang, W. et al. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng. 7, 1252–1269 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525–534 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Owen, S. F., Liu, M. H. & Kreitzer, A. C. Thermal constraints on in vivo optogenetic manipulations. Nat. Neurosci. 22, 1061–1065 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q. et al. The Allen Mouse Brain Common Coordinate Framework: a 3D reference atlas. Cell 181, 936–953 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Shea, D. J. & Shenoy, K. V. ERAASR: an algorithm for removing electrical stimulation artifacts from multielectrode array recordings. J. Neural Eng. 15, 026020 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakayama, H., Gerkin, R. C. & Rinberg, D. A behavioral paradigm for measuring perceptual distances in mice. Cell Rep. Methods 2, 100233 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, K. D. & Mrsic-Flogel, T. D. Cortical connectivity and sensory coding. Nature 503, 51–58 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leech, R. et al. Variation in spatial dependencies across the cortical mantle discriminates the functional behaviour of primary and association cortex. Nat. Commun. 14, 5656 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paolino, A. et al. Non-uniform temporal scaling of developmental processes in the mammalian cortex. Nat. Commun. 14, 5950 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levi, A. J., Yates, J. L., Huk, A. C. & Katz, L. N. Strategic and dynamic temporal weighting for perceptual decisions in humans and macaques. eNeuro 5, ENEURO.0169–18.2018 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Hyafil, A. et al. Temporal integration is a robust feature of perceptual decisions. eLife 12, e84045 (2023).

  • Resulaj, A., Ruediger, S., Olsen, S. R. & Scanziani, M. First spikes in visual cortex enable perceptual discrimination. eLife 7, e34044 (2018).

  • Nienborg, H. & Cumming, B. G. Decision-related activity in sensory neurons reflects more than a neuron’s causal effect. Nature 459, 89–92 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weber, A. I. et al. Spatial and temporal codes mediate the tactile perception of natural textures. Proc. Natl Acad. Sci. USA 110, 17107–17112 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gavornik, J. P. & Bear, M. F. Learned spatiotemporal sequence recognition and prediction in primary visual cortex. Nat. Neurosci. 17, 732–737 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baker, C. A., Elyada, Y. M., Parra, A. & Bolton, M. M. Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin. eLife 5, e14193 (2016).

  • Daigle, T. L. et al. A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174, 465–480 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sridharan, S. et al. High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks. Neuron 110, 1139–1155 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ben-Simon, Y. et al. A suite of enhancer AAVs and transgenic mouse lines for genetic access to cortical cell types. Cell 188, 3045–3064 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shin, H. et al. Transcranial optogenetic brain modulator for precise bimodal neuromodulation in multiple brain regions. Nat. Commun. 15, 10423 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCue, A. C. & Kuhlman, B. Design and engineering of light-sensitive protein switches. Curr. Opin. Struct. Biol. 74, 102377 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duncan, J. Selective attention and the organization of visual information. J. Exp. Psychol. Gen. 113, 501–517 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lemus, L., Hernández, A., Luna, R., Zainos, A. & Romo, R. Do sensory cortices process more than one sensory modality during perceptual judgments? Neuron 67, 335–348 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Riordan, M. & Passetti, F. Discrimination in autism within different sensory modalities. J. Autism Dev. Disord. 36, 665–675 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Mondor, T. A. & Amirault, K. J. Effect of same- and different-modality spatial cues on auditory and visual target identification. J. Exp. Psychol. Hum. Percept. Perform. 24, 745–755 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karlin, L. & Mortimer, R. G. Effect of verbal, visual, and auditory augmenting cues on learning a complex motor skill. J. Exp. Psychol. 65, 75–79 (1963).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Niyo, G., Almofeez, L. I., Erwin, A. & Valero-Cuevas, F. J. A computational study of how an α- to γ-motoneurone collateral can mitigate velocity-dependent stretch reflexes during voluntary movement. Proc. Natl Acad. Sci. USA 121, e2321659121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berry, J. A., Marjaninejad, A. & Valero-Cuevas, F. J. Edge computing in nature: minimal pre-processing of multi-muscle ensembles of spindle signals improves discriminability of limb movements. Front. Physiol. 14, 1183492 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cascio, C. J. & Sathian, K. Temporal cues contribute to tactile perception of roughness. J. Neurosci. 21, 5289–5296 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirsh, I. J. Auditory perception of temporal order. J. Acoust. Soc. Am. 31, 759–767 (1959).

    Article 

    Google Scholar 

  • Greenspon, C. M., Shelchkova, N. D., Hobbs, T. G., Bensmaia, S. J. & Gaunt, R. A. Intracortical microstimulation of human somatosensory cortex induces natural perceptual biases. Brain Stimul. 17, 1178–1185 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sahel, J.-A. et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 27, 1223–1229 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Drew, L. Restoring vision with optogenetics. Nature 639, S7–S9 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Taal, A. J. et al. Optogenetic stimulation probes with single-neuron resolution based on organic LEDs monolithically integrated on CMOS. Nat. Electron 6, 669–679 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y., Garg, R., Cohen-Karni, D. & Cohen-Karni, T. Neural modulation with photothermally active nanomaterials. Nat. Rev. Bioeng. 1, 193–207 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saunders, J. L., Ott, L. A. & Wehr, M. AUTOPILOT: automating experiments with lots of Raspberry Pis. Preprint at bioRxiv https://doi.org/10.1101/807693 (2019).

  • Lu, L., Leanza, S. & Zhao, R. R. Origami with rotational symmetry: a review on their mechanics and design. Appl. Mech. Rev. 75, 050801 (2023).

  • He, D., Malu, D. & Hu, Y. A Comprehensive review of indentation of gels and soft biological materials. Appl. Mech. Rev. 76, 050802 (2024).

  • Yan, P., Huang, H., Meloni, M., Li, B. & Cai, J. Mechanical properties inside origami-inspired structures: an overview. Appl. Mech. Rev. 77, 011001 (2025).

  • Christensen, R. M. Review of the basic elastic mechanical properties and their realignment to establish ductile versus brittle failure behaviors. Appl. Mech. Rev. 75, 030801 (2023).

  • Huang, Y. et al. Microfluidic serpentine antennas with designed mechanical tunability. Lab Chip 14, 4205–4212 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, M. et al. Analysis and management of thermal loads generated in vivo by miniaturized optoelectronic implantable devices. Device https://doi.org/10.1016/j.device.2025.100898 (2025).

  • Fang, Q. & Boas, D. A. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17, 20178 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, H. et al. Analytical solutions for light propagation of LED. Proc. Natl Acad. Sci. USA 122, e2508163122 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deshpande, V. S. & McMeeking, R. M. Models for the interplay of mechanics, electrochemistry, thermodynamics, and kinetics in lithium-ion batteries. Appl. Mech. Rev. 75, 010801 (2023).

  • Zhao, W., Liu, L., Lan, X., Leng, J. & Liu, Y. Thermomechanical constitutive models of shape memory polymers and their composites. Appl. Mech. Rev. 75, 020802 (2023).

  • Kwon, K. et al. Wireless, soft electronics for rapid, multisensor measurements of hydration levels in healthy and diseased skin. Proc. Natl Acad. Sci. USA 118, e2020398118 (2021).

  • Wu, M. et al. Attenuated dopamine signaling after aversive learning is restored by ketamine to rescue escape actions. eLife 10, e64041 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, M., Minkowicz, S., Dumrongprechachan, V., Hamilton, P. & Kozorovitskiy, Y. Ketamine rapidly enhances glutamate-evoked dendritic spinogenesis in medial prefrontal cortex through dopaminergic mechanisms. Biol. Psychiatry 89, 1096–1105 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, L., Priest, M. F., Nasenbeny, J., Lu, T. & Kozorovitskiy, Y. Biased oxytocinergic modulation of midbrain dopamine systems. Neuron 95, 368–384 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pachitariu, M., Sridhar, S., Pennington, J. & Stringer, C. Spike sorting with Kilosort4. Nat. Methods 21, 914–921 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siegle, J. H. et al. Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology. J. Neural Eng. 14, 045003 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Pinto, L. et al. An accumulation-of-evidence task using visual pulses for mice navigating in virtual reality. Front. Behav. Neurosci. 12, 36 (2018).

  • Rodriguez, A. et al. ToxTrac: a fast and robust software for tracking organisms. Methods Ecol. Evol. 9, 460–464 (2018).

    Article 

    Google Scholar 

  • Wu, M. et al. Dopamine pathways mediating affective state transitions after sleep loss. Neuron 112, 141–154 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, M. et al. Data and code for the article ‘Patterned wireless transcranial optogenetics generates artificial perception’. Zenodo https://doi.org/10.5281/zenodo.14880024 (2025).

  • Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button