Patterned wireless transcranial optogenetics generates artificial perception

Lebedev, M. A. & Nicolelis, M. A. L. Brain–machine interfaces: past, present and future. Trends Neurosci. 29, 536–546 (2006).
Google Scholar
Serino, A. et al. Sense of agency for intracortical brain–machine interfaces. Nat. Hum. Behav. 6, 565–578 (2022).
Google Scholar
Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brain–computer interfaces. Nat. Electron 6, 109–118 (2023).
Google Scholar
O’Doherty, J. E. et al. Active tactile exploration using a brain–machine–brain interface. Nature 479, 228–231 (2011).
Google Scholar
Flesher, S. N. et al. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372, 831–836 (2021).
Google Scholar
Rapeaux, A. B. & Constandinou, T. G. Implantable brain machine interfaces: first-in-human studies, technology challenges and trends. Curr. Opin. Biotechnol. 72, 102–111 (2021).
Google Scholar
Shin, G. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509–521 (2017).
Google Scholar
Yang, Y. et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 24, 1035–1045 (2021).
Google Scholar
Ausra, J. et al. Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals. Proc. Natl Acad. Sci. USA 118, e2025775118 (2021).
Yang, Y. et al. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience. Nat. Protoc. 17, 1073–1096 (2022).
Google Scholar
Wu, Y. et al. Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics and photopharmacology. Nat. Commun. 13, 5571 (2022).
Google Scholar
Marshel, J. H. et al. Cortical layer–specific critical dynamics triggering perception. Science 365, eaaw5202 (2019).
Robinson, N. T. M. et al. Targeted activation of hippocampal place cells drives memory-guided spatial behavior. Cell 183, 1586–1599 (2020).
Google Scholar
Gill, J. V. et al. Precise holographic manipulation of olfactory circuits reveals coding features determining perceptual detection. Neuron 108, 382–393 (2020).
Google Scholar
Carrillo-Reid, L., Han, S., Yang, W., Akrouh, A. & Yuste, R. Controlling visually guided behavior by holographic recalling of cortical ensembles. Cell 178, 447–457 (2019).
Google Scholar
Oldenburg, I. A. et al. The logic of recurrent circuits in the primary visual cortex. Nat. Neurosci. 27, 137–147 (2024).
Google Scholar
Adesnik, H. & Abdeladim, L. Probing neural codes with two-photon holographic optogenetics. Nat. Neurosci. 24, 1356–1366 (2021).
Google Scholar
Bollmann, Y. et al. Prominent in vivo influence of single interneurons in the developing barrel cortex. Nat. Neurosci. 26, 1555–1565 (2023).
Google Scholar
Chong, E. et al. Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception. Science 368, eaba2357 (2020).
Pinto, L. & Dan, Y. Cell-type-specific activity in prefrontal cortex during goal-directed behavior. Neuron 87, 437–450 (2015).
Google Scholar
Pinto, L. et al. Task-dependent changes in the large-scale dynamics and necessity of cortical regions. Neuron 104, 810–824 (2019).
Google Scholar
Pinto, L., Tank, D. W. & Brody, C. D. Multiple timescales of sensory-evidence accumulation across the dorsal cortex. eLife 11, e70263 (2022).
Cox, J. & Witten, I. B. Striatal circuits for reward learning and decision-making. Nat. Rev. Neurosci. 20, 482–494 (2019).
Google Scholar
Ouyang, W. et al. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng. 7, 1252–1269 (2023).
Google Scholar
Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525–534 (2015).
Google Scholar
Owen, S. F., Liu, M. H. & Kreitzer, A. C. Thermal constraints on in vivo optogenetic manipulations. Nat. Neurosci. 22, 1061–1065 (2019).
Google Scholar
Wang, Q. et al. The Allen Mouse Brain Common Coordinate Framework: a 3D reference atlas. Cell 181, 936–953 (2020).
Google Scholar
Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).
Google Scholar
O’Shea, D. J. & Shenoy, K. V. ERAASR: an algorithm for removing electrical stimulation artifacts from multielectrode array recordings. J. Neural Eng. 15, 026020 (2018).
Google Scholar
Nakayama, H., Gerkin, R. C. & Rinberg, D. A behavioral paradigm for measuring perceptual distances in mice. Cell Rep. Methods 2, 100233 (2022).
Google Scholar
Harris, K. D. & Mrsic-Flogel, T. D. Cortical connectivity and sensory coding. Nature 503, 51–58 (2013).
Google Scholar
Leech, R. et al. Variation in spatial dependencies across the cortical mantle discriminates the functional behaviour of primary and association cortex. Nat. Commun. 14, 5656 (2023).
Google Scholar
Paolino, A. et al. Non-uniform temporal scaling of developmental processes in the mammalian cortex. Nat. Commun. 14, 5950 (2023).
Google Scholar
Levi, A. J., Yates, J. L., Huk, A. C. & Katz, L. N. Strategic and dynamic temporal weighting for perceptual decisions in humans and macaques. eNeuro 5, ENEURO.0169–18.2018 (2018).
Google Scholar
Hyafil, A. et al. Temporal integration is a robust feature of perceptual decisions. eLife 12, e84045 (2023).
Resulaj, A., Ruediger, S., Olsen, S. R. & Scanziani, M. First spikes in visual cortex enable perceptual discrimination. eLife 7, e34044 (2018).
Nienborg, H. & Cumming, B. G. Decision-related activity in sensory neurons reflects more than a neuron’s causal effect. Nature 459, 89–92 (2009).
Google Scholar
Weber, A. I. et al. Spatial and temporal codes mediate the tactile perception of natural textures. Proc. Natl Acad. Sci. USA 110, 17107–17112 (2013).
Google Scholar
Gavornik, J. P. & Bear, M. F. Learned spatiotemporal sequence recognition and prediction in primary visual cortex. Nat. Neurosci. 17, 732–737 (2014).
Google Scholar
Baker, C. A., Elyada, Y. M., Parra, A. & Bolton, M. M. Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin. eLife 5, e14193 (2016).
Daigle, T. L. et al. A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174, 465–480 (2018).
Google Scholar
Sridharan, S. et al. High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks. Neuron 110, 1139–1155 (2022).
Google Scholar
Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).
Google Scholar
Ben-Simon, Y. et al. A suite of enhancer AAVs and transgenic mouse lines for genetic access to cortical cell types. Cell 188, 3045–3064 (2025).
Google Scholar
Shin, H. et al. Transcranial optogenetic brain modulator for precise bimodal neuromodulation in multiple brain regions. Nat. Commun. 15, 10423 (2024).
Google Scholar
McCue, A. C. & Kuhlman, B. Design and engineering of light-sensitive protein switches. Curr. Opin. Struct. Biol. 74, 102377 (2022).
Google Scholar
Duncan, J. Selective attention and the organization of visual information. J. Exp. Psychol. Gen. 113, 501–517 (1984).
Google Scholar
Lemus, L., Hernández, A., Luna, R., Zainos, A. & Romo, R. Do sensory cortices process more than one sensory modality during perceptual judgments? Neuron 67, 335–348 (2010).
Google Scholar
O’Riordan, M. & Passetti, F. Discrimination in autism within different sensory modalities. J. Autism Dev. Disord. 36, 665–675 (2006).
Google Scholar
Mondor, T. A. & Amirault, K. J. Effect of same- and different-modality spatial cues on auditory and visual target identification. J. Exp. Psychol. Hum. Percept. Perform. 24, 745–755 (1998).
Google Scholar
Karlin, L. & Mortimer, R. G. Effect of verbal, visual, and auditory augmenting cues on learning a complex motor skill. J. Exp. Psychol. 65, 75–79 (1963).
Google Scholar
Niyo, G., Almofeez, L. I., Erwin, A. & Valero-Cuevas, F. J. A computational study of how an α- to γ-motoneurone collateral can mitigate velocity-dependent stretch reflexes during voluntary movement. Proc. Natl Acad. Sci. USA 121, e2321659121 (2024).
Google Scholar
Berry, J. A., Marjaninejad, A. & Valero-Cuevas, F. J. Edge computing in nature: minimal pre-processing of multi-muscle ensembles of spindle signals improves discriminability of limb movements. Front. Physiol. 14, 1183492 (2023).
Google Scholar
Cascio, C. J. & Sathian, K. Temporal cues contribute to tactile perception of roughness. J. Neurosci. 21, 5289–5296 (2001).
Google Scholar
Hirsh, I. J. Auditory perception of temporal order. J. Acoust. Soc. Am. 31, 759–767 (1959).
Google Scholar
Greenspon, C. M., Shelchkova, N. D., Hobbs, T. G., Bensmaia, S. J. & Gaunt, R. A. Intracortical microstimulation of human somatosensory cortex induces natural perceptual biases. Brain Stimul. 17, 1178–1185 (2024).
Google Scholar
Sahel, J.-A. et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 27, 1223–1229 (2021).
Google Scholar
Drew, L. Restoring vision with optogenetics. Nature 639, S7–S9 (2025).
Google Scholar
Taal, A. J. et al. Optogenetic stimulation probes with single-neuron resolution based on organic LEDs monolithically integrated on CMOS. Nat. Electron 6, 669–679 (2023).
Google Scholar
Wang, Y., Garg, R., Cohen-Karni, D. & Cohen-Karni, T. Neural modulation with photothermally active nanomaterials. Nat. Rev. Bioeng. 1, 193–207 (2023).
Google Scholar
Saunders, J. L., Ott, L. A. & Wehr, M. AUTOPILOT: automating experiments with lots of Raspberry Pis. Preprint at bioRxiv https://doi.org/10.1101/807693 (2019).
Lu, L., Leanza, S. & Zhao, R. R. Origami with rotational symmetry: a review on their mechanics and design. Appl. Mech. Rev. 75, 050801 (2023).
He, D., Malu, D. & Hu, Y. A Comprehensive review of indentation of gels and soft biological materials. Appl. Mech. Rev. 76, 050802 (2024).
Yan, P., Huang, H., Meloni, M., Li, B. & Cai, J. Mechanical properties inside origami-inspired structures: an overview. Appl. Mech. Rev. 77, 011001 (2025).
Christensen, R. M. Review of the basic elastic mechanical properties and their realignment to establish ductile versus brittle failure behaviors. Appl. Mech. Rev. 75, 030801 (2023).
Huang, Y. et al. Microfluidic serpentine antennas with designed mechanical tunability. Lab Chip 14, 4205–4212 (2014).
Google Scholar
Wu, M. et al. Analysis and management of thermal loads generated in vivo by miniaturized optoelectronic implantable devices. Device https://doi.org/10.1016/j.device.2025.100898 (2025).
Fang, Q. & Boas, D. A. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17, 20178 (2009).
Google Scholar
Zhang, H. et al. Analytical solutions for light propagation of LED. Proc. Natl Acad. Sci. USA 122, e2508163122 (2025).
Google Scholar
Deshpande, V. S. & McMeeking, R. M. Models for the interplay of mechanics, electrochemistry, thermodynamics, and kinetics in lithium-ion batteries. Appl. Mech. Rev. 75, 010801 (2023).
Zhao, W., Liu, L., Lan, X., Leng, J. & Liu, Y. Thermomechanical constitutive models of shape memory polymers and their composites. Appl. Mech. Rev. 75, 020802 (2023).
Kwon, K. et al. Wireless, soft electronics for rapid, multisensor measurements of hydration levels in healthy and diseased skin. Proc. Natl Acad. Sci. USA 118, e2020398118 (2021).
Wu, M. et al. Attenuated dopamine signaling after aversive learning is restored by ketamine to rescue escape actions. eLife 10, e64041 (2021).
Google Scholar
Wu, M., Minkowicz, S., Dumrongprechachan, V., Hamilton, P. & Kozorovitskiy, Y. Ketamine rapidly enhances glutamate-evoked dendritic spinogenesis in medial prefrontal cortex through dopaminergic mechanisms. Biol. Psychiatry 89, 1096–1105 (2021).
Google Scholar
Xiao, L., Priest, M. F., Nasenbeny, J., Lu, T. & Kozorovitskiy, Y. Biased oxytocinergic modulation of midbrain dopamine systems. Neuron 95, 368–384 (2017).
Google Scholar
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Google Scholar
Pachitariu, M., Sridhar, S., Pennington, J. & Stringer, C. Spike sorting with Kilosort4. Nat. Methods 21, 914–921 (2024).
Google Scholar
Siegle, J. H. et al. Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology. J. Neural Eng. 14, 045003 (2017).
Google Scholar
Pinto, L. et al. An accumulation-of-evidence task using visual pulses for mice navigating in virtual reality. Front. Behav. Neurosci. 12, 36 (2018).
Rodriguez, A. et al. ToxTrac: a fast and robust software for tracking organisms. Methods Ecol. Evol. 9, 460–464 (2018).
Google Scholar
Wu, M. et al. Dopamine pathways mediating affective state transitions after sleep loss. Neuron 112, 141–154 (2024).
Google Scholar
Wu, M. et al. Data and code for the article ‘Patterned wireless transcranial optogenetics generates artificial perception’. Zenodo https://doi.org/10.5281/zenodo.14880024 (2025).




